Distributed Private Heavy Hitters

نویسندگان

  • Justin Hsu
  • Sanjeev Khanna
  • Aaron Roth
چکیده

In this paper, we give efficient algorithms and lower bounds for solving the heavy hitters problem while preserving differential privacy in the fully distributed local model. In this model, there are n parties, each of which possesses a single element from a universe of size N . The heavy hitters problem is to find the identity of the most common element shared amongst the n parties. In the local model, there is no trusted database administrator, and so the algorithm must interact with each of the n parties separately, using a differentially private protocol. We give tight information-theoretic upper and lower bounds on the accuracy to which this problem can be solved in the local model (giving a separation between the local model and the more common centralized model of privacy), as well as computationally efficient algorithms even in the case where the data universe N may be exponentially large.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differentially Private Continual Monitoring of Heavy Hitters from Distributed Streams

We consider applications scenarios where an untrusted aggregator wishes to continually monitor the heavy-hitters across a set of distributed streams. Since each stream can contain sensitive data, such as the purchase history of customers, we wish to guarantee the privacy of each stream, while allowing the untrusted aggregator to accurately detect the heavy hitters and their approximate frequenc...

متن کامل

Fast Private Norm Estimation and Heavy Hitters

We consider the problems of computing the Euclidean norm of the difference of two vectors and, as an application, computing the large components (Heavy Hitters) in the difference. We provide protocols that are approximate but private in the semi-honest model and efficient in terms of time and communication in the vector length N . We provide the following, which can serve as building blocks to ...

متن کامل

Practical Locally Private Heavy Hitters

We present new heavy-hitters algorithms satisfying local-differential-privacy, with optimal or nearoptimal worst-case error, running time, and memory. In our algorithms, the server running time is $\tilde O(n)$ and user running time is $\tilde O(1)$, hence improving on the prior state-of-the-art result of Bassily and Smith [STOC 2015] requiring $O(n^{5/2})$ server time and $O(n^{3/2})$ user tim...

متن کامل

Heavy Hitters and the Structure of Local Privacy

We present a new locally differentially private algorithm for the heavy hitters problem which achieves optimal worst-case error as a function of all standardly considered parameters. Prior work obtained error rates which depend optimally on the number of users, the size of the domain, and the privacy parameter, but depend sub-optimally on the failure probability. We strengthen existing lower bo...

متن کامل

Hashing Pursuit for Online Identification of Heavy-Hitters in High-Speed Network Streams

Distributed Denial of Service (DDoS) attacks have become more prominent recently, both in frequency of occurrence, as well as magnitude. Such attacks render key Internet resources unavailable and disrupt its normal operation. It is therefore of paramount importance to quickly identify malicious Internet activity. The DDoS threat model includes characteristics such as: (i) heavy-hitters that tra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012